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PHYSIOLOGICAL STATISTICS1 
 

From the Therapy chapter for the 3rd edition of Clinical Epidemiology, by DL Sackett 
17 April 2004 (day 108) 

 
 
 
 
"Because statistics has too often been presented as a bag of specialized computational tools 
with morbid emphasis on calculation it is no wonder that survivors of such courses regard their 
statistical tools as instruments of torture [rather] than as diagnostic aids in the art and science of 
data analysis."   
-George W. Cobb2 
 
The myriad statistical formulae that appear in textbooks and articles about how to do Phase III 
RCTs are frightening to behold.  They are tough to remember, and exist in isolation without 
relation to each other.  In addition, they require an understanding of mathematics and statistics 
far beyond most would-be trialists’ background knowledge and expertise.  Finally, they take so 
much time to master that clinicians who do so risk losing their clinical competence, social life, 
positive self-image, and sense of humour  
 
All the foregoing is true until you realize that the importance of these statistical formulae lies not in 
their individual application but in their thoughtful combination.  Although it’s possible (and in 
statistical circles, mandatory) to describe this combination in mathematical terms, clinicians might 
understand them far better by thinking of them in physiologic terms, analogous to combining the 
determinants of systemic arterial blood pressure.   
 
A patient’s blood pressure represents the net effects of multiple cardiac, central nervous system, 
endocrine, renal, and vascular factors (that can interact both synergistically and antagonistically).  
By wonderful analogy, the confidence we have in an RCT’s results (that is, the narrowness of the 
confidence interval around the effect of the experimental treatment1) is the net result of the 
interaction of patients, treatments, and study factors that, as you’ll see, also can behave 
synergistically and antagonistically.  
 
 
The only formula you’ll ever need 
 
The “only formula” of physiological statistics is ridiculously simple, and looks like this: 

 
 
                         Signal            ___________ 
Confidence   =                     ----------------   x     √ sample size 
             Noise 
 
 
 
Expressed in words, the confidence you have in the conclusion of an RCT is the ratio of the size 
of the signal generated by your treatment to the size of the background noise, times the square 
root of sample size.  Let’s define these terms so that they are clear. 
 
Confidence describes how narrow the confidence interval is (the narrower the better) around the 
effect of treatment, whether expressed as an absolute or relative risk reduction or as some other 
                                                      
1 or, in the old-fashioned terms that most trialists have abandoned, the trial’s “statistical 
significance” 
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measure of efficacy.  For readers still imprisoned by P-values, this sort of “Confidence” becomes 
greater as the p-value becomes smaller.    
 
The Signal describes the differences between the effects of the experimental and control 
treatments.  In the RCTs in which I’ve taken part, the most useful Signal in understanding their 
design, execution, analysis, and interpretation has been the (absolute) arithmetic difference 
between the rate (or average severity) of events in experimental and control patients.  When, as 
in most RCTs, these outcomes are “discrete” clinical events such as strokes, bleeds, or death, 
we’ll call this arithmetic difference (the control event rate minus the experimental event rate) the 
Absolute Risk Reduction (ARR).   
 
Why don’t we prefer the more frequently reported Relative Risk Reduction (which is the absolute 
risk reduction divided by the control event rate)?  This is because the relative risk reduction 
doesn’t distinguish important treatment effects from trivial ones (slashing deaths from 80% down 
to 40% generates the same relative risk reduction [0.5] as teasing them from 0.008% down to 
0.004%).   
 
Finally, in some RCTs the outcomes are “continuous” measures such as blood pressure, elapsed 
time on a treadmill before chest pain occurs, or location on a 0 to 100 scale of disease activity or 
functional status.  In these latter cases, the signal is best represented for me by the Absolute 
Difference (AD) in this continuous measure. 
 
The Noise (or uncertainty) in an RCT is the sum of all the factors (“sources of variation”) that can 
affect the absolute risk reduction or absolute difference. Why might patients’ responses to 
treatment, or our measurements of them, vary?  Some of these sources are obvious but others 
aren’t, so I’ll use plenty of examples along the way. 
 
Finally, sample-size is the number of patients in the trial.  Note that its influence on confidence 
occurs as its square root.  Accordingly, if you want to cut the confidence interval around a study’s 
absolute risk reduction in half by adding more patients to it, you need to quadruple their number.   
Alternatively, an RCT designed to confidently detect an absolute risk reduction of 0.10 needs to 
quadruple its size in order to confidently detect an absolute risk reduction of 0.05 (half as great). 
 
 
A simple way to demonstrate the formula at work or play 
 
For a quick appreciation of the “physiology” described by this formula, I suggest that you perform 
a simple experiment.  Place a CD player alongside a radio.  Ask a friend to Insert one of your 
favorite melodies (the signal) into the former but not tell you which one it is.  Next, tune the radio 
to a spot between stations where you hear only static (the noise) and turn up the volume.  Then 
start the audiotape at low volume.  Note the “confidence” with which you can identify the melody 
within, say, 2 seconds.  Then vary the volume of the CD (signal), the radio static (noise) and the 
amount of time (analogous to sample size) it takes you to discern the former amidst the latter.  
 
 
Large, simple trials 
 
In order to generate extremely small and highly convincing confidence intervals around moderate 
but important benefit signals, a very strong case can and has been made for really large, really 
simple RCTs3 and systematic reviews4.  Their success in revolutionizing the treatment and 
improving the outcomes of patients with heart disease, cancer and stroke attests to their success.  
When study patients number in the tens of thousands they can overcome, by the brute force of 
numbers, the negative influences of small but highly important absolute risk reductions (e.g., the 
polio vaccine trials that required hundreds of thousands of study individuals) in the presence of 
considerable noise (as long as the latter does not result from bias).  They are described and 
discussed on page xx.  However, most trials, even when carried out in multiple centers, are of 
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small to moderate size, and they must confront and solve the challenges of small (but useful) 
signals in the face of lots of noise and a shortage of eligible patients.  
 
 
 
Effects of signal, noise, and sample size on the confidence or our conclusions 
 
Table 3-02-I-1 summarizes the independent effects of changes in each of these three elements 
on the confidence interval around a trial’s absolute or relative risk reduction when the other two 
elements are held constant.  If any of its entries are confusing, I suggest that you repeat the 
CD/radio experiment until they all make sense.  
 
 
Table 3-02-I-1: Effects of changes in a single element on Confidence 
 

Effect on our Confidence in the RCT Result Element that is 
changed When this element increases When this element decreases 

Signal (ARR) Confidence rises Confidence falls 
Noise Confidence falls Confidence rises 
Sample size Confidence rises Confidence falls 
Note: Confidence increases as the confidence interval around the absolute risk reduction (ARR) 
signal narrows. 
 
You are now ready to understand how each of these elements can raise or lower the confidence 
in your RCT result.  But first a cautionary note.  Because this pursuit of confidence may involve 
restricting the entry of certain sorts of patients into your RCT, it may shift it away from a 
“pragmatic” orientation (“Does offering the treatment to all patients do more good than harm 
under usual circumstances?”) towards an “explanatory” one (“Can rigorously applying the 
treatment to just some subgroup of patients do more good than harm under ideal 
circumstances?”).  I’ll discuss the implications of this shift as they arise. 
 
 
Determinants of the signal, and how they can be manipulated to maximize it 

Four determinants affect the magnitude of the signal generated in an RCT (as you will see later, 
they can also affect noise).  They are: the “baseline” or control group’s risk of an outcome event, 
the potency of your experimental treatment, the responsiveness of experimental patients to it, and 
the completeness with which you detect outcome events.  Your understanding of how these 
determinants operate begins and ends with your realization that the important number in an RCT 
is not the number of patients in it, but the number of outcome events among those patients.   
 
All 4 determinants operate in every group of individuals you consider for, or later invite to join, a 
Phase III RCT.   Sometimes they are already at optimum levels: your patients are at high risk, 
your experimental treatment is powerful, all your patients can respond to it, and you can capture 
every outcome event.  In that case, you won’t need to apply any restrictive eligibility criteria on 
their account.   
 
More often, however, these determinants are optimum only in certain sub-groups of potential 
study patients.  Accordingly, you’ll need to decide whether to selectively enroll just these optimum 
subgroups.  As I’ll show you in a moment, changing the eligibility criteria to achieve this selective 
enrolment can result in large, indeed definitive, increases in the signal you produce in your trial.  
On the other hand, the opportunity costs of examining, lab testing, and imaging all patients in 
order to find that optimum subgroup can be prohibitive.  Moreover, as noted earlier, restricting 
patient eligibility criteria might shift your RCT away from its intended “pragmatic” orientation 
towards an “explanatory” one.  With this caveat in mind, I’ll now demonstrate each of these four  
determinants and how they can be manipulated to maximize your treatment signal. 
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Maximizing the signal by selectively enrolling “high risk” patients.   
 
Restricting eligibility to patients who are at higher than average “baseline” risks of outcome 
events leads to higher “Control Event Rates” on control (and experimental) therapy.  The absolute 
risk reduction signal (ARR) is the product of this control event rate (CER) and the relative risk 
reduction from therapy (RRR).  In terms of simple maths, ARR = CER x RRR5.   If the relative risk 
reduction constant over different control event rates, the experimental treatment will generate a 
larger absolute risk reduction signal when the control event rate is high than when it is low. This is 
illustrated in Table 3-02-I-2.  If the relative risk reduction is 1/4 for all patients in the RCT 
(regardless of their control event rates), notice the different impacts on the absolute risk reduction 
signal and the corresponding confidence in the trial result when we enrol all patients and when 
we restrict enrolment to just the subgroups at high and low baseline risk.  Recruiting and 
randomizing just the subgroup of 120 high-risk patients in Panel B generated both a higher 
absolute risk reduction (up from 0.125 to 0.20) and a 20% narrower confidence interval around it 
(from +/- 100% to +/- 80%) than randomizing all 240 patients in Panel A.  An examination of the 
low-risk patients in Panel C shows how they inflate the confidence interval around the absolute 
risk reduction signal.  In fact, every low-risk patient admitted to this trial makes the need for 
additional patients go up, not down!   
 



 

Page 5 of 17 

Table 3-02-I-2: Effect of enrolling only “high-risk” patients with higher control event rates (CERs).   
 

 Panel A  Panel B Panel C 
 All Eligible Patients 

(n=240) 
 Just High-Risk Patients 

(n=120) 
Just Low-Risk Patients 

(n=120) 
 Control Exper.  Control Exper. Control Exper. 

 
 

 
12 

 
9 

 

 
 
 

45  
 

E 
v 
e 
n 
t 
s 

 
 
 
 
 

60  
 

 
 
 
 
 
 

36 
 
 
 

 
 
 
 
 
 
 
 
 

48 
 

 60 

75 

 

 
 
 
 
 
 
 
 
 
 

12 

24 

  

48 51 

 

   

 

 
Control Event 
Rate 

 
0.50 

  
0.80 

 
0.20 

Relative Risk 
Reduction 

 
1/4 

  
1/4 

 
1/4 

Experimental 
Event Rate 

 
0.375 

  
0.60 

 
0.15 

Absolute 
Risk 
Reduction 

 
0.125 

  
0.20 

 
0.05 

Size of the 
95% 
Confidence 
Interval 
around that 
Absolute 
Risk 
Reduction 

 
 

+/- 100% 

  
 

+/- 80% 

 
 

+/- 270% 

P-value 0.07  0.03 

 

0.63 

 

 
Note: In Panel A we have randomized 240 patients into equal sized control and experimental 
groups (and have lost none of them to follow-up).  Although their overall risk of an event if left on 
conventional therapy is 50% (control event rate  = 0.50), they are a heterogeneous lot and half of 
them (Panel B) are at high risk if left untreated (control event rate  = 0.80) and half (Panel C) are 
at low risk (control event rate = 0.20).  The relative risk reduction (1/4) is the same in all groups. 
Confidence intervals shown here are calculated as CI for a difference in absolute risk reductions, 
as described by Douglas Altman6.  
 
 
 
 
Remember that this strategy works only when the relative risk reduction is either constant or 
increasing as control event rates increase. Although there isn’t much documentation about this, 
and there are some exceptions, I’ve concluded that relative risk reduction is pretty constant over 
different control event rates when the treatment is designed to slow the progression of disease 
and prevent its complications.  This has been observed, for example, in meta-analyses of aspirin 
and the secondary prevention of cardiovascular disease7, and of both ACE-inhibitors8 and beta 
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blockers9 in heart failure.  Moreover, in an examination of 115 meta-analyses covering a wide 
range of medical treatments, the control event rate was twice as likely to be related to the 
absolute risk reduction as to a surrogate for the relative risk reduction (the odds ratio), and in only 
13% of the analyses did the relative risk reduction significantly vary over different control event 
rates10.  When the treatment is designed to reverse the underlying disease, I’ve concluded that 
relative risk reduction should increase as control event rates increase, exemplified by carotid 
endarterectomy for symptomatic carotid artery stenosis where the greatest relative risk reductions 
are seen in patients with the most severe stenosis (and greatest stroke risks)11.   
  
When outcomes are “continuous” you can look for evidence on whether the experimental 
treatment will cause the same relative change in a continuous outcome (say, treadmill time) for 
patients with severe starting values (awful exercise tolerance, analogous to high-risk patients for 
discrete events) and good starting values (good but not wonderful exercise tolerance, analogous 
to low-risk patients for discrete events).  If this evidence suggests a consistent relative effect over 
the range of the continuous measure, I hope it’s clear why the absolute difference signal 
generated by experimental treatment is greater (and its confidence interval narrower) among the 
initially severe patients than among the less severe ones (if this isn’t clear, consider how much 
“room for improvement” there is in a patient who already is doing pretty well vs. one who is doing 
poorly).    
 
 
The harsh truth 
 
Harsh as it may sound, you need people in your RCT who are the most likely to have the events 
you hope to prevent with your experimental treatment (e.g., myocardial infarctions, relapses of a 
dreadful disease, or death).  And, as long as the relative risk reduction from treatment is constant 
or rises with increasing control event rates, these high-risk patients also have the most to gain 
from being in the trial.  Finally, to be practical this “high-risk” strategy requires not only solid prior 
evidence that high- and low-risk patients exist, but also that their identification is easy and cheap 
enough to make their inclusion and exclusion cost-effective in conducting the trial. 
 
The foregoing should cause second thoughts among trialists who are considering arbitrary upper 
age limits for their trials; they may be excluding precisely the high-risk patients who will benefit 
the most, raise the absolute risk reduction and make the largest contribution to the confidence in 
a positive result.  On the other hand, if high-risk (or severe) patients are too far-gone to be able to 
respond to the experimental therapy, or if competing events (e.g., all-cause mortality) swamp 
those of primary interest in the trial, the absolute risk reduction’s confidence interval will expand 
and its signal might decrease.  This discussion introduces a second element, responsiveness.  
 
 
Maximizing the signal by selectively enrolling “highly-responsive” patients 
 
The second way that you can increase the absolute risk reduction signal and the confidence in a 
positive trial result is by selectively enrolling highly-responsive patients who are more likely (than 
average) to respond to the experimental therapy.  Their greater-than average relative risk 
reductions translate to increased absolute risk reductions and higher confidence in positive trial 
results.  This increased responsiveness can arise from two different sources.  The first and most 
easily determined cause is patients’ compliance with an efficacious experimental therapy.  Those 
who take their medicine might respond to it, but those who don’t take their medicine can’t respond 
to it.  No wonder, then, that so much attention is paid to promoting and maintaining high 
compliance during RCTs, and why some RCTs put patients through a pre-randomisation 
“faintness-of-heart” task, rejecting those who are unwilling or unable to comply with it.   This is 
because, once patients are randomized all of them must be included in subsequent analyses, 
even if they don’t comply with their assigned treatment. The second cause for increased 
responsiveness is the result of real biologic differences in the way that subgroups of patients 
respond to experimental treatment.  This biologic difference may be much more difficult (and 
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expensive) to determine among otherwise eligible patients.  Table 3-02-I-3 illustrates how either 
cause works among another 240 patients, this time with subgroups at the same baseline risk but 
with differing degrees of compliance (or other aspect of responsiveness). 
 
Panel A of Table 3-02-I-3 is identical to Panel A of Table 3-02-I-2.  If, as in Panel B of Table 3-02-
I-3, just the highly compliant subgroup is recruited, the resulting confidence intervals around the 
absolute risk reduction are narrower than those observed among all 240 patients.  However, 
every patient with low compliance (Panel C) admitted to this trial made the need for additional 
patients go up, not down!  Note that this high-response strategy works best when control event 
rates are either constant or increasing among subgroups with progressively higher relative risk 
reductions.  Once again, although there isn’t much documentation of control event rates among 
subgroups with different responsiveness, patients in our carotid endarterectomy trials with higher 
control event rates also enjoyed greater relative risk reductions with surgery11.  As in the case of 
high-risk patients, the identification of high-response patients has to be both accurate and 
inexpensive if it is to decrease the total effort necessary for achieving a definitive trial result. 
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Table 3-02-I-3: Effect of enrolling only highly-responsive patients.   
 

 Panel A  Panel B Panel C 
 All Eligible Patients 

 
(n=240) 

 Patients with > 90% 
Compliance 

(n=120) 

Patients with < 50% 
Compliance 

(n=120) 
 Control Exper.  Control Exper. Control Exper. 

 
 
 
 

 
 
 

18 

 
 
 
 

45  

 
 
 
 

27 

E 
v 
e 
n 
t 
s 

 
 
 
 
 

60  

 
 
 
 
 

30 

 
 
 
 
 

30 
 
 
 
 
 

 60 
75 

 

 
 
 
 
 
 
 
 
 
 

30 

42 

  

30 
33 

 

   

 

 
Control 
Event Rate 

 
0.50 

  
0.50 

 
0.50 

Relative 
Risk 
Reduction 

 
1/4 

  
2/5 

 
1/10 

Experimenta
l Event Rate 

 
0.375 

  
0.30 

 
0.45 

Absolute 
Risk 
Reduction 

 
0.125 

  
0.20 

 
0.05 

Size of the 
95% 
Confidence 
Interval 
around that 
Absolute 
Risk 
Reduction 

 
 

+/- 100% 

  
 

+/- 86% 

 
 

+/- 350% 

P-value 0.07  0.04 

 

0.72 

 

 
Note: In Panel A we have randomised 240 patients into equal sized control and experimental 
groups (and have lost none of them to follow-up).  Although their overall compliance rate is great 
enough to achieve a relative risk reduction of ¼, they are a heterogeneous lot and half of them 
(Panel B) take 90% or more of their study medication and achieve a relative risk reduction of 2/5, 
whereas the other half (Panel C) take 50% or less of it and achieve a relative risk reduction of 
only 1/10.  The control event rate (0.50) is the same in all groups. 
 
 
 
 
 
Maximizing the signal by combining risk and responsiveness 
 
The foregoing elements of risk and responsiveness can usefully be combined as shown in Table 
3-02-I-4, where I have summarized the “attractiveness” (in terms of maximizing the absolute risk 
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reduction signal and the confidence of a positive trial result) of different sorts of patients whom 
you might consider entering into your RCT.  This will come home to haunt you if, toward the end 
of your recruitment phase, you are short of “ideal” patients and decide to relax your inclusion 
criteria and start admitting lower risk or less compliant individuals.  As predicted in Tables 3-02-I-
2 and 3-02-I-3, admitting such patients may increase, rather than decrease, the remaining sample 
size requirement (and administrative burdens) that must be satisfied to achieve a sufficiently large 
absolute risk reduction and sufficiently narrow confidence intervals around it.  
 
 
 
Table 3-02-I-4: The attractiveness of different sorts of potential RCT patients. 
 

  Responsiveness to (Compliance with) the 
Experimental Rx  

(Relative Risk Reduction) 
  High Low 

High  
Ideal! 

Are they too sick to 
benefit? 

Admit with caution 

 
 
Risk (Control 
Event Rate) Low Are they too well to 

need any treatment? 
Admit with caution 

 
Keep out! 

 
 

 

 

Maximizing the signal by giving enough treatment over enough time 
 
The third way that you can tend to raise an absolute risk reduction signal and the confidence in a 
positive trial result is to employ a potent experimental treatment and give it a chance to exert its 
effect.  You shouldn’t expect patients to experience better outcomes when their treatment 
regimens aren’t administered in a sufficient dose for a sufficient duration.  Thus, an RCT to see 
whether drastic reductions in blood pressure reduce the risk of stroke must employ a drug that, in 
Phase 2 trials, really does reduce blood pressure to the desired level.  This “be-sure-your-
experimental-treatment-is-potent” strategy is dramatically demonstrated in surgical trials, where 
the principal investigators may restrict their clinical collaborators to just those surgeons with 
excellent skills and low perioperative complication rates.  In similar fashion, you should be sure 
that the experimental treatment is applied long enough to be able to achieve its favourable 
effects, if they are to occur.  
 
If you digested the foregoing, you’ll quickly grasp the incremental price of therapeutic progress 
that trialists must pay as they search for marginal improvements over treatments they already 
have shown, in previous RCTs, to do more good than harm.  When today’s standard treatment is 
already known (through prior RCTs) to do more good than harm, clinicians and ethics committees 
should and will insist that this “Established Effective Therapy” (rather than a placebo) be provided 
to the control patients in any subsequent RCT of the next generation of potentially more effective 
treatments.  As a result, the control event rates are progressively reduced in subsequent trials 
(they behave like the low risk patients described above), and even if an absolute risk reduction is 
maintained at its former level, its confidence interval will widen.  No surprise, then, that RCTs in 
acute myocardial infarction have become huge and hugely expensive, not (only) because 
cardiologists are an entrepreneurial lot, but because they already are reducing control event rates 
with the thrombolytics, beta blockers, aspirin, and ACE-inhibitors they validated in previous 
positive trials.   
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As forecast in the introduction, the foregoing strategies for increasing the absolute risk reduction 
and narrowing its confidence interval by restricting trial participants to just the high-risk, high-
response group, by maximizing compliance, by employing just the best surgeons, and so forth 
moves the resultant trial away from a “pragmatic” study question (“does offering the treatment do 
more good than harm under usual circumstances?”) toward an “explanatory” study question (“can 
rigorously applying the treatment do more good than harm under ideal circumstances?”)12.   If the 
original question was highly pragmatic and intended to compare treatment policies rather than 
rigorous regimens, the strategies described above may be unwise and it becomes more 
appropriate to conduct a really large, simple trial.  Similarly, these restrictive strategies may raise 
concerns (and not a few hackles) about the “generalisability” of the trial result.  As I’ve argued 
elsewhere13, it is my contention that front-line clinicians do not want to “generalize” an RCT’s 
results to all patients, but only to “particularize” its results to their individual patient, and already 
routinely adapt the trial result (expressed, say, as a “number-needed-to-treat” or NNT, which is 
the inverse of the absolute risk reduction) to fit the unique risk and responsiveness of their 
individual patient, the skill of their local surgeon, the patient’s preferences and expectations, and 
the like14.  Moreover, cautionary pronouncements about generalisability have credibility only if the 
failure to achieve it leads to qualitative differences in the kind of responses patients display such 
that, for example, experimental therapy is, on average, unambiguously helpful for patients inside 
the trial but equally unambiguously harmful or powerfully useless, on average, to similar patients 
outside it.  This issue is discussed in greater detail on page xx. 
 
 
Maximizing the signal by ascertaining every event 
 
The fourth way that you can maximize an absolute risk reduction signal and the confidence in a 
positive trial result is to make sure that you identify and record (that is, ascertain) every event 
suffered by every patient in the trial.  Up to this point, I have assumed that all events have been 
ascertained in both control and experimental patients, and that the resulting absolute risk 
reduction signal, regardless of whether it is large or small, is true.  In other words, although the 
absolute risk reductions displayed in Tables 1 & 2 are affected by the risk-responsiveness 
composition of the study patients, they nonetheless provide unbiased estimates of the effects of 
treatment.  What happens in the real world of RCTs, where the ascertainment of events is 
virtually always incomplete?  As you will see, this leads to systematic distortion of the absolute 
risk reduction signal away from the truth; that is, this estimate of the signal becomes biased.  
Suppose that the RCT’s follow-up procedures were loose, and many patients were lost.  Or, 
suppose that the outcome criteria were so vague and subjective that lots of events were missed.  
If experimental and control patients are equally affected by this incomplete ascertainment, the 
situation depicted in Table 3-02-1-5 would occur, with a loss in the strength of the absolute risk 
reduction signal even though the relative risk reduction is preserved.  Accordingly, the fourth way 
that you can increase the absolute risk reduction signal and the confidence in a positive trial 
result is by improving the ascertainment of events during the RCT.  This is shown in Table 3-02-I-
5. 
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Table 3-02-I-5: What happens with equally incomplete ascertainment of events in both control 
and experimental patients. 
 

 Panel A  Panel B Panel C 
 True Result, 

Ascertaining All Events 
(n=480) 

 Missing 25% of Events 
in Each Group 

Consequences of 
Missing 25% of Events 

in Each Group 
 Control Exper.  Control Exper. Control Exper. 

 
 
 
 

 
 
 
 

 
 
 

72 

 
 
 

72 

 
 
 
 

96  90 Miss 24 

 
 
 
 

90 

E 
v 
e 
n 
t 
s 

 
 
 
 
 

120  Miss 30 
 
 
 
 
 

 120 
144 

 

120 
144 150 

168 

 
                      Truth        

  
Effect of this problem: 

 

 

 
Resulting analysis: 

Control Event 
Rate 

 
0.50 

  
⇩ 25% 

 
0.375 

Relative Risk 
Reduction 

 
1/5 

  
Same 

 
1/5 

Experimental 
Event Rate 

 
0.40 

  
⇩ 25% 

 
0.30 

Absolute Risk 
Reduction 

 
0.10 

  
⇩ 25% 

 
0.075 

Size of the 
95% 
Confidence 
Interval 
around that 
Absolute Risk 
Reduction 

 
 

+/- 89% 

  
 

increases 

 
 

+/- 110% 

P-value 0.04  rises 

 

0.10 

 

 
          
Note: Panel A of Table 3-02-I-5 displays the true effect of the experimental treatment: a relative 
risk reduction of 1/5, generating an absolute risk reduction signal of 0.10 whose confidence 
intervals exclude zero.  If experimental and control patients are equally affected by this 
incomplete ascertainment (missing, say, 25% of events in both groups) the misclassification of 
events depicted in Panel B would occur.  As a consequence, shown in Panel C, although the 
relative risk reduction is preserved, the absolute risk reduction signal declines from 0.10 to 0.075, 
its confidence interval now crosses zero, and the trial result becomes indeterminate. 
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The price of unequal ascertainment among control and experimental patients 
 
But what if the accuracy of ascertainment differed between control and experimental patients, 
such as might occur in non-blinded trials when experimental patients are more closely followed 
(e.g., for dose-management and the detection of toxicity) than control patients?  What if that 
greater scrutiny of experimental patients led to missing only 5% of events in the experimental 
group while continuing to miss 25% of control events?  This situation is shown in Table 3-02-I-6. 
Missing more events among control than experimental patients not only decreases the absolute 
risk reduction signal but also widens its confidence interval.  In this case, the bias leads to a 
“conservative” type II error (concluding that the treatment may be useless when, in truth, it is 
efficacious), and presents a powerful additional argument for blind RCTs (since they maintain 
equal scrutiny of experimental and control patients and equal ascertainment of their outcome 
events).   
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Table 3-02-I-6: What happens with better ascertainment of events in experimental than control 
patients. 
 
 

 Panel A  Panel B Panel C 
 True Result, 

Ascertaining All Events 
 Missing 5% of 

Experimental Events but 
25% of Control Events 

Consequences of 
Missing 5% of 

Experimental Events 
but 25% of Control 

Events 
 Control Exper.  Control Exper. Control Exper. 

 
 
 
 

  
 
 

91 

 
 
 
 

96  90 Miss 5 

 
 
 
 

90 

 
 
 
 

91 

E 
v 
e 
n 
t 
s 

 
 
 
 
 

120  Miss 30 
 
 
 
 
 

 120 
144 

 

120 
144 150 149 

 
                          Truth 

 

  
Effect of this problem: 

 

 
Resulting analysis 

Control 
Event Rate 

 
0.50 

 ⇩ 25% 0.38 

Relative 
Risk 
Reduction 

 
1/5 

  
Wiped out 

 
Zero! 

Experimenta
l Event Rate 

 
0.40 

  
⇩ 5% 

 
0.38 

Absolute 
Risk 
Reduction 

 
0.10 

  
Wiped 
out 

 
Zero! 

Size of the 
95% 
Confidence 
Interval 
around that 
Absolute 
Risk 
Reduction 

 
 

+/- 89% 

  
 

Explodes 

 
 

∞ 

P-value 0.04  Soars 

 

1 

 

 
Note: Panel A of Table 3-02-I-6 displays the true effect of the experimental treatment: as in Table 
3-02-I-5, there is a relative risk reduction of 1/5, generating an absolute risk reduction signal of 
0.10 whose confidence intervals exclude zero.  If experimental and control patients are unequally 
affected by this incomplete ascertainment (missing 25% of events in the control group but only 
5% of events in the experimental group) the misclassification of events depicted in Panel B of 
Table 3-02-I-6 would occur.  As a consequence, shown in Panel C, both the relative and absolute 
risk reductions are falsely reduced and the trial draws a false-negative conclusion. 
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A parallel lesson here is the need to achieve complete follow-up of patients in both explanatory 
and pragmatic trials.  Remember, the important number in an RCT is not the number of patients 
in it, but the number of outcome events among those patients.   
 
Having defined the determinants of the signal generated in an RCT and demonstrated how they 
can be manipulated to maximize that signal, it is time to consider how noise affects our 
confidence in the trial result, and how that noise can be reduced. 
 
 
Determinants of the noise, and how they can be manipulated to minimize it 

The effects of noise and its reduction are perhaps best understood by considering RCTs whose 
outcomes are continuous measures (blood pressure, functional capacity, quality of life, and the 
like) rather than discrete events (such as major stroke, brain metastasis, or death).  The key to 
understanding noise is to think of all the sorts of factors (“sources of variation” or, better yet, 
“sources of uncertainty”) that might affect the end-of-study result for this continuous measure, not 
just in the individual study patient but especially in the groups of patients that comprise the 
experimental and control groups in the RCT.   
 
Consider blood pressure.  You know from prior experience that you won’t get the same blood 
pressure result for every patient in an RCT.  Indeed, you know that repeat measurements of 
blood pressure in the same patient at the same visit will generate different results (depending on 
whether it’s the first or the fourth measurement at that visit, on whether they are inhaling or 
exhaling, on whether they are talking, on whether you are supporting their arm and back, and so 
forth).  At the group level you must add the variation in blood pressure that exists between study 
patients (based not only on differences in their individual endocrine, cardiovascular, and nervous 
systems and responses to therapy, but also depending on how well they know their examiner and 
the timing of their last cigarette, their last meal, their last conversation, their last void, and by 
which of several types of sphygmomanometers are being applied to them by which examiners 
with what hearing acuity and which preferences for the terminal digits 0, 2, 4, 6, and 8).  These 
sources of variation in recorded blood pressure may, in combination, create so much noise that it 
becomes impossible to detect the signal (say, a small but important reduction in blood pressure) 
being generated by the experimental treatment.   
 
 
Strategies for minimizing noise 
 
How might you minimize this noise, recalling from the first section of this essay that decreases in 
noise are rewarded by decreases in confidence intervals around signals and, therefore, increases 
in our confidence about the results of the trial?   In this case, the link between statistics and 
physiology is just about perfect.  As summarized in Table 3-02-I-7, you reduce the noise element 
in your trial by eliminating or minimizing sources of uncertainty.  I’ll illustrate this with the blood 
pressure example. 
 

1. You can make sure that every study patient actually has the target condition whose 
natural history you are attempting to change. Misdiagnoses at patient entry create 
subgroups of patients with the wrong conditions who may be incapable of responding to 
your experimental treatment, thus adding noise to the trial.   
 

2. You can remove the uncertainty that arises from studying the two different treatments in 
separate, “parallel” groups of different patients (with their different baseline blood 
pressures and responses to treatment) by applying both treatments to every patient.  This 
is accomplished by randomizing, for each patient, the order in which they receive the 
experimental and control regimens, separated by an intervening period of sufficient 
length to “wash-out” any effects of the previous regimen.  This “within-patient” or 
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“crossover” design, if feasible, removes the effect of any variation between study patients 
and usually produces big reductions in noise that are reflected in big reductions in 
confidence intervals (ambitious readers can verify this by contrasting the results of paired 
and unpaired t-tests on a data set obtained from a cross-over trial).  Although 
theoretically attractive, cross-over trials are not suited for disorders subject to irreversible 
events or total cures, and patients who withdraw or drop-out before completing both 
treatment periods are tough to analyze.  Moreover, it is impossible to tell whether there is 
a “carry-over” of the effects of the first treatment into the second treatment period until the 
trial is over.  When these carry-over effects are large, the data for the second period may 
have to be thrown away, the trial’s noise continues unabated, and you are no better off 
than if the trial had been a more usual “parallel” design in the first place.     
 

3. You can reduce variations in the outcomes of study patients by making them more 
homogeneous through the same strategies that you employed in the previous section: 
assembling study patients with similar risks (e.g., just those with the highest blood 
pressures) and similar responsiveness to the experimental treatment.  This can be done 
either by “restricting” admission to the trial to just those patients with similar risk and 
responsiveness, or by stratifying study patients for these features and then randomizing 
from each stratum.  The result is a narrower band of blood pressures and blood pressure 
changes with therapy (smaller standard deviations for these measures) and reduced 
noise.  As previously mentioned, in explanatory surgical trials we routinely reduce 
uncertainty in responsiveness by drafting only those surgical collaborators who can 
document their high success and low complication rates. 
 

4.  You can reduce noise by making experimental and control patients as similar as possible 
in their risk and responsiveness.  Although random allocation tends to create similar 
groups (and is our only hope for balance in unknown determinants of responsiveness), 
we can ensure similarity for known determinants by stratification prior to randomization or 
even by minimization (allocation of the next patient to which ever treatment group will 
minimize any differences between the groups)15.  Minimization is described with an 
example on page xx. 
 

5. In similar fashion, you can reduce noise by achieving similar (and high) compliance 
among all study patients. 

 
6. You can minimize sloppiness and inconsistency in the ascertainment of outcomes.  Not 

only should your outcome criteria be objective and unambiguous; they should be applied 
(or at least adjudicated) by two or more observers who are “blind” to which treatment a 
study patient has received.  In trials whose outcomes are measured in absolute 
differences (say, in hemoglobin levels), noise is reduced by analyzing the averages of 
duplicate or triplicate determinations of the outcome. 
 

 
Table 3-02-I-7: Strategies for reducing noise in an RCT 
 
Strategy Tactics 
Validate eligibility Make sure study patients have the target condition. 
Crossover Trial Give both treatments to every patient, in random order. 
Homogenize Restrict participants to a single risk-response subgroup. 
Minimize Render experimental and control patients as identical as possible in 

their risk and responsiveness. 
Maintain high 
compliance 

Monitor compliance with study regimens, and apply compliance-
improving strategies when needed. 

Ascertain all events Achieve complete follow-up of all study patients and ascertain 
outcomes in every one of them. 
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Increasing Sample Size: the last resort 

Reducing confidence intervals by increasing the size of an RCT should be a last resort.  There 
are two major reasons for this admonition.  First, as I stated at the start of this section, in order to 
halve the width of the confidence interval around the absolute risk reduction achieved by your 
experimental treatment, you need to quadruple the number of patients in your trial.  For example, 
in Panel A of Table 3-02-I-1, to halve the confidence interval for an absolute risk reduction from 
+/- 100% to +/- 50% demands a quadrupling in sample size from 240 to 960 patients.  Only after 
exhausting the foregoing strategies for increasing the signal and reducing the noise should you 
take on the daunting task of increasing your sample size.  The second reason why it may be 
dangerous to attempt to rescue an RCT that is too small, is that scouring recruitment sites with 
relaxed inclusion/exclusion criteria leads to the recruitment of low-risk, low-response patients. 
Tables 2-4 reveal that adding patients of these sorts can paradoxically lower absolute risk 
reductions and increase the confidence interval around them.   Of course, sample size 
requirements can be revisited during a trial (with care not to destroy blindness) and methods are 
available for determining the risk of drawing false negative conclusions after a trial is completed16. 
 
There are 11 strategies that you can employ either to increase your sample size or make the 
most of whatever sample size you do recruit.  I’ll present them in Section 3-10 of this chapter, 
when I discuss sample size. 
 
 
Gaining first-hand experience with (and the “feel” of) physiological statistics 
 
Just as the understanding of human physiology benefits from dynamic laboratory and bedside 
(real-life) observations of the effects of altering a single determinant (say, peripheral resistance) 
on a “final common pathway” (say, arterial blood pressure), aspiring trialists can increase their 
understanding of physiological statistics by creating the tables in this essay from their own 
protocols and data sets and examining the effects of altering these determinants, singly and in 
combination, on a final common pathway such as the confidence interval around an absolute risk 
reduction.   
 
The simple experiment with the CD player and radio that opened this essay provided primitive 
insights.  Better still, and analogous to what can be learned from interactive computer models of 
human physiology, aspiring trialists can study the combined effects of different signal strengths, 
different amounts of noise, and different sample sizes in computer models of randomized trials.  
For example, a Clinical Trials Simulator has been developed by an international consortium that 
is promoting and aiding the performance of pragmatic trials in low-income countries.  Its current 
version can be accessed via the “PraCTIHC” website17.   
 
Users of these simulators can input whatever risks, responsiveness, compliance, loss to follow-
up, ascertainment of outcomes, drop-outs, cross-overs, etc they desire.  The simulator then 
carries out a few hundred simulations in a few seconds and displays the effects of these inputs on 
both the validity of the hypothetical trials and the confidence intervals around their signals.    
 
I reckon the more that trialists use such CD and radio, pencil-and-paper or computer simulations 
to “massage” their assumptions before they start a trial, the less they’ll have to “massage” their 
inconclusive data after it’s over. 
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